Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Genomics, Proteomics & Bioinformatics ; (4): 437-451, 2021.
Article in English | WPRIM | ID: wpr-922088

ABSTRACT

Cashmere, also known as soft gold, is produced from the secondary hair follicles (SHFs) of cashmere goats. The number of SHFs determines the yield and quality of cashmere; therefore, it is of interest to investigate the transcriptional profiles present during cashmere goat hair follicle development. However, mechanisms underlying this development process remain largely unexplored, and studies regarding hair follicle development mostly use a murine research model. In this study, to provide a comprehensive understanding of cellular heterogeneity and cell fate decisions, single-cell RNA sequencing was performed on 19,705 single cells of the dorsal skin from cashmere goat fetuses at induction (embryonic day 60; E60), organogenesis (E90), and cytodifferentiation (E120) stages. For the first time, unsupervised clustering analysis identified 16 cell clusters, and their corresponding cell types were also characterized. Based on lineage inference, a detailed molecular landscape was revealed along the dermal and epidermal cell lineage developmental pathways. Notably, our current data also confirmed the heterogeneity of dermal papillae from different hair follicle types, which was further validated by immunofluorescence analysis. The current study identifies different biomarkers during cashmere goat hair follicle development and has implications for cashmere goat breeding in the future.

2.
Electron. j. biotechnol ; 25: 64-69, ene. 2017. tab, graf, ilus
Article in English | LILACS | ID: biblio-1008601

ABSTRACT

Background: MicroRNAs (miRNAs) are endogenous noncoding RNAs that regulate various biological processes. miR-125b is a miRNA that has been reported to be critical for hair follicle (HF) morphogenesis and development. We identified that the expression of miR-125b varies during an individual hair cycle (anagen, catagen, and telogen) in the skin of cashmere goats. We constructed a gain model (by overexpressing miR-125b) and a loss model (by inhibiting endogenous miR-125b) based on dermal papilla cells (DPCs) to further investigate the role of miR-125b in HF cycle. In addition, we used a dual-luciferase system to highlight the predicated target genes of miR-125b. Results: We found that miR-125b affects the expression of FGF5, IGF-1, SHH, TNF-α, MSX2, LEF-1, FGF7, NOGGIN, BMP2, BMP4, TGF-ß1, and ß-catenin. The dual-luciferase assay further validated a direct interaction between miR-125b and FGF5 and TNF-α. Conclusion: miR-125b affects the expression levels of genes related to hair cycle and may also play a critical role in regulating the periodic development of HF.


Subject(s)
Animals , Hair Follicle/growth & development , MicroRNAs/metabolism , Recombination, Genetic , Goats , Adenoviridae , Tumor Necrosis Factor-alpha/metabolism , Hair Follicle/cytology , Hair Follicle/metabolism , MicroRNAs/genetics , Fibroblast Growth Factor 5/metabolism , Enzyme Assays , Luciferases
3.
Progress in Biochemistry and Biophysics ; (12)2006.
Article in Chinese | WPRIM | ID: wpr-589246

ABSTRACT

Temporal and spatial expressions of ?-catenin investigated in the hair follicle and epidermis of the hoof periphery in bovine embryonic development. IHC (immunohistochemical method) was applied to qualitatively detect the temporal and spatial expressions of ?-catenin. ?-catenin was detected in suprabasal, epidermal basal layer, placode, hair bud in early phase(E68~93),and expressed strongly in epidermal basal layer, placode, and hair bud, in suprabasal expressed less strongly; in metaphase(E94~184), ?-catenin was detected in epidermis, hair peg, and in suprabasal, epidermal basal layer, hair follicle bulge, inner root sheath, outer root sheath, follicular infundibulum expressed less strongly; in late phase(E184~225), ?-catenin expressed weakly in epidermal basal layers, while expressed strongly in epidermal keratinocytes. The result suggested that ?-catenin plays an important role in hair follicle morphogenesis in the periphery of bovine hoof in bovine embryos.

SELECTION OF CITATIONS
SEARCH DETAIL